Malliavin derivative

From HandWiki

In mathematics, the Malliavin derivative is a notion of derivative in the Malliavin calculus. Intuitively, it is the notion of derivative appropriate to paths in classical Wiener space, which are "usually" not differentiable in the usual sense.[citation needed]

Definition

Let [math]\displaystyle{ H }[/math] be the Cameron–Martin space, and [math]\displaystyle{ C_{0} }[/math] denote classical Wiener space:

[math]\displaystyle{ H := \{ f \in W^{1,2} ([0, T]; \mathbb{R}^{n}) \;|\; f(0) = 0 \} := \{ \text{paths starting at 0 with first derivative in } L^{2} \} }[/math];
[math]\displaystyle{ C_{0} := C_{0} ([0, T]; \mathbb{R}^{n}) := \{ \text{continuous paths starting at 0} \}; }[/math]

By the Sobolev embedding theorem, [math]\displaystyle{ H \subset C_0 }[/math]. Let

[math]\displaystyle{ i : H \to C_{0} }[/math]

denote the inclusion map.

Suppose that [math]\displaystyle{ F : C_{0} \to \mathbb{R} }[/math] is Fréchet differentiable. Then the Fréchet derivative is a map

[math]\displaystyle{ \mathrm{D} F : C_{0} \to \mathrm{Lin} (C_{0}; \mathbb{R}); }[/math]

i.e., for paths [math]\displaystyle{ \sigma \in C_{0} }[/math], [math]\displaystyle{ \mathrm{D} F (\sigma)\; }[/math] is an element of [math]\displaystyle{ C_{0}^{*} }[/math], the dual space to [math]\displaystyle{ C_{0}\; }[/math]. Denote by [math]\displaystyle{ \mathrm{D}_{H} F(\sigma)\; }[/math] the continuous linear map [math]\displaystyle{ H \to \mathbb{R} }[/math] defined by

[math]\displaystyle{ \mathrm{D}_{H} F (\sigma) := \mathrm{D} F (\sigma) \circ i : H \to \mathbb{R}, }[/math]

sometimes known as the H-derivative. Now define [math]\displaystyle{ \nabla_{H} F : C_{0} \to H }[/math] to be the adjoint of [math]\displaystyle{ \mathrm{D}_{H} F\; }[/math] in the sense that

[math]\displaystyle{ \int_0^T \left(\partial_t \nabla_H F(\sigma)\right) \cdot \partial_t h := \langle \nabla_{H} F (\sigma), h \rangle_{H} = \left( \mathrm{D}_{H} F \right) (\sigma) (h) = \lim_{t \to 0} \frac{F (\sigma + t i(h)) - F(\sigma)}{t}. }[/math]

Then the Malliavin derivative [math]\displaystyle{ \mathrm{D}_{t} }[/math] is defined by

[math]\displaystyle{ \left( \mathrm{D}_{t} F \right) (\sigma) := \frac{\partial}{\partial t} \left( \left( \nabla_{H} F \right) (\sigma) \right). }[/math]

The domain of [math]\displaystyle{ \mathrm{D}_{t} }[/math] is the set [math]\displaystyle{ \mathbf{F} }[/math] of all Fréchet differentiable real-valued functions on [math]\displaystyle{ C_{0}\; }[/math]; the codomain is [math]\displaystyle{ L^{2} ([0, T]; \mathbb{R}^{n}) }[/math].

The Skorokhod integral [math]\displaystyle{ \delta\; }[/math] is defined to be the adjoint of the Malliavin derivative:

[math]\displaystyle{ \delta := \left( \mathrm{D}_{t} \right)^{*} : \operatorname{image} \left( \mathrm{D}_{t} \right) \subseteq L^{2} ([0, T]; \mathbb{R}^{n}) \to \mathbf{F}^{*} = \mathrm{Lin} (\mathbf{F}; \mathbb{R}). }[/math]

See also

References